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1.OSS PATTEFN IDENTIFICATION IN
NE2AF=REAL-TIME ACCOUNTING SYSTEMS

ABSTRACY

To maximize the henefits froum an advanced safequards
technique such as near-real-time accounting (NRTA),
geophisticated methods of analyzirg gecuential materials
accounting data are necessary. The methods must be capahle of
controlling the overall false-alarm rate while assuring good
power of detection against all porsible diversion scenarios. A
methrd drawn from the field of pattern recognition and related
to thn a'arm-sequernce chart [1,2) appeares to be promisina,
Power curves hamed on Monte Carle calculatiers ilinstrate the

improvements over more convertional methedr.

1. INTRODUCTTON

Amony the varionn advanced tockniounes current ty under
conslderation for int anat fonal rgafeguacds, near=real-time
acceount ing (NRTA) holdy the promige of incicarcd rensitivity and
timelinenn over mrenent accounting practices. To realirze thin
Improved capability yequiren noitable proceduren for examining

the 1elatively larage bealy of materiala accornt{ing {nformatjon.
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The purpocse of this paper is to report on a new technigue having
ite k= =~ in the field of pattern recogrnition.

I'ivay Ior nf ruclwar material carn occur in a wide variety
of scenarios that are generally considered to »e rounded hy
abrupt diversion (diversion of a relatively large amount over a
short time period such as one week) and by protracted diversion
(ar accumulation of individually small diversions over a leng
time such as one year). In practice, the safeguards system must
address all the inteirmediate scenariocs as well.

One of the potential advantages ol NRTA is that it can
treat all such diversicn scenarios bhecause materials balances
become available in a timely manner. However, the procedures
for exarinine the materials balances for evidence of diversion
must he carefully constructed to take maximum advantage of the
available information, while quarding against the range of
possihle diversion scenarios. One way to achleve this agcal, as
suggect.ed in eceveral previous references [1-8], is to study all
possikle contiguous rubsequences of materials halances;:
ohviously, all diverricn rcenarios would bhe covered hy such a
scheme .

As currently implemented, the method is hascd on requential
statistical tests hecause they reem host suited to the NRTA
problem. The remalning difficulty concerns controlling the
overall falge=alarm rate of the compornite procedure: {n

yeneral, each test corresponding to each subrequence of
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materials balances will tend tc contribute to an increase in
false alarms. Ir actualitv, the ircrease is not as large as
might he thought hecause the suhseguences are hig ..y correlated.
The exact mathematical structure of a testing procedure
that would provide maximum power of detection while controlling
the overall false-alarm rate is difficult to determine,
especially in an analytical sense. For this reason, we have
turned to the field of pattern recognition for assistance. The
application of certain of the methods to the alarm-sequence
ctart, which is described belnw and in more decail in Refs. 9
and 10, if a ratural extension of tris graphical display that
heretofeore has larqgely heen suhjectively interpreted. In the
follecwing, we rriefly describe the method and give some

preliminarv results that abpear highlv encouraging.

2. THF PATTEFN-RECOGNITION ALGOFRITHM

A tesy statistic commonly applied in materials accounting

ie the cumulative sum of materjials halances,

CUSUM(k) = f MB, ,
i=1 ’
th
where Mni is the | materials balance and k ir the number of
currently avail hle materials halancea. This rtatistic does not

remiire ane assumptions about the loss pattern, provides an
3
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estimate of the total materials loss, and is useful in deciding
whether a seguence of materials balances contains statistical
evidence of materials loss. This decision problem can be

formulated as testing the composite nypothesis

[T ¥

EO ’ k=l,2,---,N ’

[

ageinst the composite alternative

Hy: f MB? > 6 for at leasi one k, k = 1,2,..4,N
i=l

where MB? is the actual materials balance and N is the total

numher of halances. This test of hypotheses may be formulated as

a sequential probahility ratio test (SPRT) in which a statistic

defined as the ratio of CUSUM probability densities under each

hypothesis is compared to a decision threshold ([11,12]. Under

this testing procedure the decirion rule becomes:

r < ~-/2 I1ln TOI ., accept Ho '
Tf CUSUM (k)
/Vc(k) > VY211ln T,! » accept H

otherwise, take another ohservation ,

where Vc(k) is the variance of CUSUM(k, and To' Tl are

lower and upper thrryhnlds that depend uporn -he required Type I

and Type II errors for this procedurr. Tnhe thresholds may be

determined by the approximations developed hy Wald [11]
4
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[ ] -8
TO_T__—-’.Y._andTl— ’

where ¥ is the false-alam proiarilitv and 2 is the
non-detection prohakility.

Because the actual loss pattern cannot be knew:, the SFRT is
applied to all contiguous suhsequences of materials balances,
resulting in a total of N(N + 1)}/2 tests for a sequence of N
belances. Further, to determine more precisely the significance
of eaclr terct result, the SPRT is aPplied using decision
thresholds for several false-alarm probabilitie-. The results of
these tests are represented in compact form by an alarm-sequence
chart [1,2].

The alarm-sequence chart is a pattern-recognition device
that provides a graphic display of the false-alarm prohability
associated with each indication of loss. Each observation
sequence for which the ratio exceeds an upper threshold is
assigned an alphabetic descriptor representing the false-alarm
prorability and a pair of numhers (M,N) that are the initial and
final halances in the sequence. Figures 1 and 2 are example
alarm charts for abrupt (period 3) and protracted {(periods 3-8)
diversions, respectively. 7The association between letters and

false-alarm prohability is given in Table 1I.
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TABLF I

PLOTTING SYMBOLS FOF ALARM-SEQUENCE CHART

Symbhol False-Alarm Probabjlity
A 0.02 to 0.07
B 0.01 0.02
c 0.005 0.01
D 0.001 0.005
E 0.0005 0.001
F 0.0001 0.0005
G 0.00005 0.0001

Trhe pattern-recognition algorithm given in this paper is
based on the transformation of the alphabhetic descriptor and
initial and final balance numher of the alarm chart into a
numerical matrix as follows.

The row number I for a particular subsequence from halance M

to halance N is given by

N(N - 1)
] = ——— 4+
> M

For example, the suhsequence 2 to 4 is represented in row B.
EAnch row of the transformed matrix represents the significance
level of the test result for a particular subsequence. Row 1 iF
the subsequence from balance 1 to halance 1; row 2 is from

balance 1 to halance 2; row 3 is from bhalance 2 to FLalance 2;

etc. There are NBMAX rows in the matrix qgiven by

NBMAX = NB(NB + 1)/2 ,
6
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where FB is the nurber of available materials balances. Each
column in the matrir contains a number representing the
false-alarm probability used in determining the SPRT thresholds.
For example, if :he probability ratio for a particular
subsequence (matrix row) exceeded the fourth false-alarm
prohability thresheld, that row would have the numbers 1

through 4 in tne first four columns, and the remaining columns

would he zero:

row M, N 123400.. .0 .

The next step is to calculate the row sum vector, whick has

one element fcr each row in the transformed matrix. It is

calculated from the equation

NC
rPSUM(I) = ) K (I,3) |,
J=1
where I is the row number,

J is the column number,

NC is the numher of columns in the matrix K,

¥(I,J) is the assigned numerical value of the column
number, and

L is a constant power.

Because each row in the matrix represents a subsequence, 30 does

each element in RSUM. Therefore, the next step in the algorithm
7



IAEA-5M=-260/52

is to agagregate the elements of RSUM to isvlate the information
pertaining to each subsequence. One way to do this is to
calculate the balance sum vector BSUM, which has NB elements,
each being the gum of all the RSUM elements corresponding to the
initial and final balance numbers of a particular subsequence.
For example, the fourth element of BSUM represents the
subsequence starting a. 1 and ending at 3. It would contain the
sum of RSUM elements 1, 2, 4, 5, and 6 hecause these elements
either start the subsecuence, end the subseguence, or both.

The informatior in the halance sum vector BSUM is used to
provide ir."‘cations of possible diversion and to ascertain the
scenario of the diversion. as each balance is taken in this
sequential process, the location of the largest element in the
BSUM vector is determined. If the magnitude of this element is
less than some threshold (obtaincd through simulation), no loss
is assumed and the sequential process continues. If the
threshold is exceeded, then loss is assumed and the element
number where the mar¥imum BSUM value occurred is used to determine
the scenario. Fc- example, if the maximum value occurs in BSUM
element 4, 1epresenting subsequence 1 to 3, and it exceeds the
threshold, then protracted loss in the subsequence 1 to 3 is
indicated. If the maximum appears in element 6, representing the
subhsecquence 3 to 3, then atrupt loss at balance 3 is assumed.
From the loss scenario determined above, the estimated amnunt of
materia) lost is obtained from the CUSUM data for the

corresponding subsequence.
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3. EXAMPLE APPLICATION

The pattern recognition scheme described in Section 2 was
tested on simulated data from a simple model process. This
process consisted of a single inventory of material in each

period i with measunrement model

= + £ n ’
Ii I(1 Ii + I)

L]
n

1, 2, «-¢, N ’

where EI repre. ents an uncorrelated measurement error that
i

changes in each balance period, HI is a correlated error
representing, for example, an instrument kias that does not
change over the N periods; I is the true inventory of material.

The single input arnd single output *transfer for the model process

in each period i have the common measurement model

where ET , N, are the uncorrelated and correlated errors
i -

respectively, and T is the true input (output) transfer. For
this example the standard deviation of each of the errors is
equal to 0.1, and the true values of the inventories a-d
transfers are all 1.0. Under these assumptions the standard
deviation of a single materials halance i: 0.24, and the standard
deviation of the cumulative sum of 25 materials balances is 3.61.
The algorithm was tested in a series of 25~halance-pericd

Monte Carlo simulations under each of the assumed scenarios and
9
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various levels of diversion. The threshold for detection was
obtained from a no-loss scenario to give a false-alarm
probability of 5¢%. The results are shown in Fig. 3. Aiso shown
in Fig. 3 is the detection probability for a fixed-length CUSUM
test applied over 1, 6, and 25 balance periods. In these results
the fixed-length test appears to he hetter than the
pattern-recognition method when they are compared for the same
los=s scenario. Note, however, that in applying the CUSUM we
require a priori knowledge of the balances where materials loss
will occur, whereas the pattern-recogniti-»a method does not need
that information. Indeed, when the loss scenario is not known,
the correct comparison between the two methods uses the
fixed-length CUSUM over 25 balances, reflecting the lack of
knowledge about which balances contain materials loss. Table II
gives the predicted resultrs of the algorithm for one level of

diversion for each scenaiio average of 5000 simulation runs.

TABLE II

ACTUAL SCENARIO

Abhrupt Protracted
Actual suhsequence 10-10 510
Actual loss 0.735 2.782
Overall detection probability 0.5274 0.7250
Predicted abrupt suhnequence 10-10 5-5
Predictel abrupt loss 0.92 0.8]
Predicted protracted suhsequence 9-10 5-6
Predicted protracted loss 1.42 1.64

10
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4. SUMMARY AND FUTURE WOPFK

This paper has described an application of
pattern-recognition principles to materials accounting in which
improved probabilities of detecting materilals loss are obtained
as compared with standard methods such as a fixed-length CUSUM
test. Further, these methods can also identify the type of loss
scenario. The basis of this work 1s the alarm-sequence chart,
which summarizes the results of testing all contiguous
subseguences at several significance levels. Previously these
charts were interpreted subjectively; however, by converting the
alarm-sequence chart to a numerical matrix and extracting
features sensitive to different loss scenarios, the
alarm-sequence chart can Fe interpreted automatically and with
an improved detectinn probabhility. Other applications of
pattern recognition to interpreting alarm sequence charts are
under investigation, including constructing alarm-chart
templates representative of different loss scenarios and
defining a metric that measures the dirtance hetween a realized

alarm ch.rt and the templates.

11
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